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Abstract 

The choice of appropriate materials for electric vehicle (EV) 

applications is critical for improving vehicle performance, safety, 

and sustainability. This study uses two advanced multi-criteria 

decision-making (MCDM) techniques, COmbinative Distance-

based ASsessment (CODAS) and ELimination Et Choix Traduisant 

la REalité (ELECTRE), to evaluate and rank different materials 

used in EV manufacturing. The study uses an extensive literature 

review and expert consultations to identify a comprehensive set of 

criteria, including mechanical properties, economic factors, 

environmental impact, manufacturability, and electrical 

conductivity. The Entropy Method is used to objectively calculate 

the weights of these criteria. The CODAS method generates a strong 

ranking based on the Euclidean and Taxicab distances from an ideal 

solution, while ELECTRE refines it using pairwise comparisons and 

outranking relationships. A sensitivity analysis is also performed to 

assess the rankings' stability in the face of variations in criteria 

weights. The integrated approach provides a holistic evaluation, 

ensuring that all criteria are balanced. The findings show that 

Carbon Fiber Reinforced Polymer (CFRP) is the best material for 

body panels in electric vehicles, outperforming all other materials 

tested. This study offers valuable insights for automotive 

manufacturers, guiding material selection processes to align with 

both technical and strategic objectives. 

Keywords: Multi-Criteria Decision-Making (MCDM), CODAS, 

ELECTRE, Automotive Materials, Sustainability, Sensitivity 

Analysis. 

1. INTRODUCTION

A vehicle's performance, safety, and environmental friendliness 

are all affected by the materials used in its construction. The 

automobile industry has been investigating new, improved 

materials that outperform more conventional options like steel 

and aluminum in response to rising concerns over fuel economy, 

pollution, and compliance with environmental laws. A growing 

number of innovative materials, such as high-strength alloys, 

lightweight composites, and other similar products, are being 

developed to meet the growing demand for affordable, long-

lasting solutions. Strong decision-making frameworks are 

required, however, due to the varied and frequently competing 

criteria for material selection. 

When it comes to choosing materials, electric vehicles (EVs) 

offer both new problems and possibilities. The search for 

materials that can satisfy these demanding standards is driven by 

the need to optimize weight for improved battery efficiency, 

guarantee safety, and keep costs down. The traditional use of 

strong and long-lasting materials like steel has made them 

indispensable in the automobile industry. Nevertheless, electric 

vehicles' fuel economy and range are adversely affected by steel's 

substantial weight. In response, lightweight materials with good 

mechanical properties, such as aluminum and magnesium alloys, 

have been developed. Also, modern composites like carbon fiber 

reinforced polymers (CFRPs) have great strength-to-weight 

ratios, which is perfect for electric and high-performance 

vehicles that need to keep their weight down. The use of these 

materials improves the vehicle's performance, handling, and gas 

mileage. 

Because they permit the assessment and ranking of options 

according to numerous, frequently competing, criteria, MCDM 

methods have lately shown to be useful tools for dealing with 

such complicated decision-making problems. Using MCDM 

techniques like CODAS and ELECTRE as a foundation, this 

research finds the best materials for electric vehicle body panels. 

It is well-documented that MCDM methods are versatile and can 

be used for both absolute and relative evaluations in socio-

economic contexts [1]. It is possible to modify the multivariant 

design and multiple criteria analysis methodology that has proven 

successful in building lifecycle assessments and apply it to the 

selection of materials for automobiles [2]. The use of hybrid 

fuzzy-based approaches to sustainable supplier selection in the 

construction industry further highlights the importance of 

sustainability when choosing materials [3]. 

One area where the ARAS method has proven useful in 

engineering is in evaluating different options for foundation 

installation [4]. These capabilities were further expanded to grey 

systems with the development of the ARAS-G method, which 

improved decision-making in uncertain situations [5]. For solid 

and trustworthy decision-making, understanding how data 

transformation affects multicriteria evaluation outcomes is 

essential [6]. The gas and oil industry has investigated the 

possibility of using hybrid metrics like TOPSIS, SCOR, and AHP 

in supplier evaluation and selection processes, demonstrating the 

sector-specific adaptability of MCDM methods [7]. Detailed 

overviews of the evolution and application of these techniques in 

various fields can be found in comprehensive surveys on the 

state-of-the-art MCDM/MADM methods [8]. In various 

contexts, the strengths and limitations of MCDA methods like 

SAW and COPRAS are brought to light through comparative 

analysis [9]. 
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There has been a plethora of research on the topic of logistic 

center location selection using fuzzy MCDM methods [10]. The 

knowledge and improvement of MCDM methods have been 

greatly aided by state-of-the-art surveys and trends in these 

methods [11, 12]. Prior work in MCDM that built on top of the 

ELECTRE methods and made use of PROMETHEE methods 

was crucial to the development of outranking techniques [13, 14]. 

Evidence of PROMETHEE's extensive use in a variety of 

decision-making contexts is presented in thorough literature 

reviews on the method and its applications [15]. Its usefulness in 

team settings has been shown by improvements to the TOPSIS 

approach to group decision-making [16, 17]. To better assess 

risks in urban construction projects, the fuzzy multiple criteria 

decision-making method has been employed, underscoring the 

significance of dealing with uncertainty when making decisions 

[18]. 

Use of MCDM techniques in the setting of EVs has been the 

subject of recent research. For collaborative settings, TOPSIS's 

extension for group decision-making is especially pertinent [19]. 

The application of multi-criteria decision-making techniques to 

the problems of water scarcity and urbanization sheds light on 

how to deal with climate anomalies [20]. MCDM methods are 

relevant in this field because data-driven multi-criteria decision 

support methods and complex sensitivity analysis are used for 

electric vehicle selection [21, 22]. The critical role of multi-

attribute decision-making methods in automotive material 

evaluation is further demonstrated by comparative analyses of 

MCDM techniques for material selection in automotive 

applications and the use of these methods for electric car 

selection [23, 24]. 

In order to optimize CO2 decisions in the automotive industry, 

eco-material selection and multi-objective decision-making 

approaches have been investigated [25, 26]. The significance of 

considering sustainability when making decisions is highlighted 

by prospective sustainability assessments of different fuels and 

technology for individual motorized transportation [27]. 

There has also been investigation into novel methods of 

automobile body design for EVs. The new ideas for electric 

vehicle bodies prioritize efficiency and environmental 

friendliness [28]. Sustainable automotive technology 

advancements can be attributed, in large part, to the use of 

MCDM in evaluating green suppliers, alternative powertrains, 

and body-in-white materials [29, 30]. New materials for car 

bodies have been developed thanks to advances in materials 

science, which lend credence to the idea that MCDM can be 

useful when choosing materials [31, 32]. The most up-to-date 

information on recent advancements in composite materials and 

what they mean for material selection can be found in reviews of 

these materials' uses in the automotive industry [33]. 

Evaluating and choosing the best materials for electric vehicle 

body panels is made easier with the help of multi-criteria 

decision-making (MCDM) methods like CODAS and 

ELECTRE. These methods guarantee long-term viability by 

taking into account many factors, such as mechanical properties, 

cost, recyclability, and environmental effect. Insights from the 

large corpus of literature on MCDM methods highlight their 

adaptability and efficacy in handling complicated decision-

making issues in diverse domains, such as automotive material 

selection. 

2. METHODOLOGY

Evaluating automotive materials for EVs using the CODAS and 

ELECTRE methods is described in this section. Important steps 

in the methodology include deciding what to measure, gathering 

relevant data, using the entropy method to determine weights, 

applying CODAS and ELECTRE, and finally, integrating the 

results with sensitivity analysis. 

2.1 Criteria Selection 

Choosing the appropriate criteria is an essential part of 

guaranteeing a thorough and strong assessment. After conducting 

a thorough examination of existing literature and seeking input 

from professionals in the field, the subsequent set of standards 

were determined to be crucial for choosing appropriate 

automotive materials for electric vehicles (EVs): The durability 

and performance of automotive components rely heavily on their 

mechanical properties, such as tensile strength, impact resistance, 

and fatigue strength. Economic factors encompass the expenses 

associated with acquiring raw materials, the costs incurred during 

the manufacturing process, and the accessibility of materials. 

These factors have a direct impact on the overall cost-efficiency. 

Environmental factors, including the ability to be recycled, the 

amount of carbon emissions produced, and the overall impact on 

the environment, were taken into account to ensure that the 

material choices were sustainable. Manufacturability 

encompasses the simplicity of production, suitability for current 

manufacturing methods, and technological advancement of the 

materials. Lastly, Electrical Conductivity is crucial for the 

components that are part of the electrical systems in Electric 

Vehicles (EVs). 

2.2 Data Collection 

Information for each criterion was collected from diverse 

sources, such as material datasheets, industry reports, and 

scientific publications. The standardized testing results and 

market analysis provided quantitative data on factors such as 

tensile strength and cost. The assessment of qualitative data, such 

as recyclability and environmental impact, was conducted using 

established environmental assessment protocols and expert 

judgment. Table 1 presents the criteria and data for automotive 

materials. 
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Table 1: Criteria and Data for Automotive Materials 

Material Tensile 

Strengt

h (MPa) 

Impact 

Resistanc

e (J) 

Fatigue 

Strengt

h (MPa) 

Cost 

(INR/kg

) 

Recyclabilit

y (%) 

Carbon 

Footprin

t (kg 

CO2/kg) 

Ease of 

Fabricatio

n (1-10) 

Electrical 

Conductivit

y (S/m) 

Aluminum 

(Al) 

310 120 150 300 95 9 8 3.8e7 

HSS 800 60 500 100 85 2 6 1.5e6 

CFRP 1200 50 600 2500 30 15 7 1e3 

Magnesiu

m (Mg) 

220 25 110 500 50 7 6 2.3e7 

GFRP 900 100 300 200 25 12 7 1e3 

Titanium 

(Ti) 

950 55 550 3000 60 11 5 2.4e6 

2.3 Entropy Method for Weight Calculation 

The Entropy Method was used to determine the weights of the criteria objectively based on the collected data. 

(a) Normalize the Decision Matrix: Transform the original data into a normalized matrix 𝑃𝑖𝑗, where each element

represents the normalized value of the 𝑖 − 𝑡ℎ alternative with respect to the 𝑗 − 𝑡ℎ criterion. The normalized decision

matrix is presented in Table 2 by using the equation 1.

𝑃𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

(Eq. 1) 

Table 2: Normalized Decision Matrix 

Material 

Tensile 

Streng

th 

Impact 

Resistan

ce 

Fatigu

e 

Streng

th 

Cost 
Recycl

ability 

Carbon 

Footpri

nt 

Ease of 

Fabricati

on 

Electrical 

Conductiv

ity 

Aluminu

m (Al) 

0.32 0.12 0.28 0.13 0.19 0.34 0.24 0.82 

HSS 0.52 0.10 0.44 0.07 0.18 0.07 0.14 0.15 

CFRP 0.45 0.60 0.40 0.71 0.15 1.03 0.10 0.002 

Magnesi

um (Mg) 

0.10 0.06 0.16 0.13 0.16 0.39 0.14 0.49 

GFRP 0.15 0.50 0.32 0.18 0.17 0.53 0.14 0.002 

Titanium 

(Ti) 

0.52 0.12 0.44 1.00 0.20 0.21 0.10 0.053 

Table 2 displays the outcomes of an analysis of each material using eight criteria: carbon footprint, electrical conductivity, tensile 

strength, impact resistance, fatigue strength, and cost. For example, aluminum's electrical conductivity, normalized tensile strength, 

and impact resistance (Al) are 0.82, 0.32, and 0.12, respectively. A level playing field can be achieved when comparing materials 

thanks to this normalization, which removes the impact of different measurement units and scales. The relative importance of the 

other materials to total performance is now reflected in each value. The next step is this stage, which is crucial for multi-criteria 

decision-making analyses with programs like ELECTRE and CODAS. 
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(b) Calculate the Entropy for Each Criterion: The entropy 𝑒𝑗 for each criterion 𝑗 is calculated using the equation 2:

𝑒𝑗 = −𝑘 ∑ 𝑃𝑖𝑗 ln(𝑃𝑖𝑗)

𝑚

𝑖=1

(Eq. 2) 

where 𝑘 =
1

ln(𝑚)
 and 𝑚 is the number of alternatives. 

Table 3: Entropy Values 

Criterion Entropy (𝑒𝑗)

Tensile Strength 0.937 

Impact Resistance 0.798 

Fatigue Strength 0.918 

Cost 0.880 

Recyclability 0.957 

Carbon Footprint 0.777 

Ease of Fabrication 0.932 

Electrical Conductivity 0.649 

Table 3 displays the entropy values for all criteria. As an example, the entropy value of 0.937 for tensile strength suggests that the 

values of tensile strength vary greatly among the various materials. Electrical conductivity also has a low entropy value of 0.649, 

which is less uncertain than the other criteria. The importance of each criterion can be calculated using these entropy values. Less 

diversity in the criterion, as shown by lower entropy values, means that it is more important for decision-making. The inverse is true 

for higher entropy values; they indicate that the criterion is less important and more diverse. One of the most important steps in 

methods like ELECTRE and CODAS for evaluating and ranking the alternatives is to calculate the weighted normalized decision 

matrix. This matrix is based on the entropy values. 

(c) Calculate the Degree of Diversification: The degree of diversification 𝑑𝑗 for each criterion is calculated to

understand the spread or variability in the criteria values. This is calculated using Equation 3:

𝑑𝑗 = 1 − 𝑒𝑗 (Eq. 3) 

The degree of diversification is presented in Table 4. 

Table 4: Degree of Diversification 

Criterion Degree of Diversification (𝑑𝑗)

Tensile Strength 0.063 

Impact Resistance 0.202 

Fatigue Strength 0.082 

Cost 0.120 

Recyclability 0.043 

Carbon Footprint 0.223 

Ease of Fabrication 0.068 

Electrical Conductivity 0.351 

Table 4 displays the level of diversity for every criterion. For example, the tensile strength degree of diversification is 0.063, which 

means that the materials do not vary much in terms of their tensile strengths. On the other hand, electrical conductivity has a higher 

degree of diversity (0.351) than the different criteria, suggesting a greater degree of variability. Because they affect the relative 

importance of each criterion, these diversity values are critical. A higher level of diversity indicates that the criterion is more 

important in distinguishing between the alternatives, and should be given more weight. On the flip side, a lower degree of diversity 

suggests that the alternatives aren't very different, which means that they don't carry as much weight. 
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(d) Determine the Weights: The weight 𝑤𝑗 of each criterion is calculated as:

𝑤𝑗 =
𝑑𝑗

∑ 𝑑𝑗
𝑛
𝑗=1

(Eq. 4) 

The calculated criteria weights are presented in Table 5 

Table 5: Criteria Weights 

Criterion Weight (𝑤𝑗)

Tensile Strength 0.064 

Impact Resistance 0.204 

Fatigue Strength 0.082 

Cost 0.121 

Recyclability 0.043 

Carbon Footprint 0.224 

Ease of Fabrication 0.068 

Electrical Conductivity 0.352 

Table 5 displays the weights that were computed for each 

criterion. For example, tensile strength has a weight of 0.064, 

which shows its importance in the evaluation. With a weight of 

0.352, electrical conductivity stands out as the most important 

criterion out of all those considered. Based on their level of 

diversity, these weights represent the relative significance of each 

criterion. Using these, we can create a weighted normalized 

decision matrix that considers both the alternatives' normalized 

values and the weights assigned by the criteria. 

2.4 CODAS Method 

The CODAS method was utilized to prioritize the materials 

according to their proximity to an optimal solution. The CODAS 

method consists of the following steps: 

Initially, the decision matrix underwent a process of 

normalization to ensure that various criteria could be 

evaluated and compared using a standardized scale. The 

normalization of each element in the decision matrix 𝑃𝑖𝑗  was

performed using Equation 1. Subsequently, the normalized 

values were multiplied by the weights obtained through the 

entropy method. The weights 𝑤𝑗  were computed using

Equation 4. The weights were applied to calculate both the 

Euclidean and Taxicab distances of each alternative from the 

ideal solution. The Euclidean distance, denoted as 𝑑𝐸𝑖 , is

calculated using Equation 5. 

𝑑𝐸𝑖 = √∑ 𝑤𝑗 (𝑃𝑖𝑗 − 𝑃𝑖𝑗
∗ )

2
𝑛

𝑗=1

Eq. 5 

where 𝑃𝑖𝑗
∗  is the ideal value for the 𝑗 − 𝑡ℎ criterion.

Similarly, the Taxicab distance 𝑑𝑇𝑖  is given by Eq. 6

𝑑𝐸𝑖 = ∑ 𝑤𝑗  |𝑃𝑖𝑗 − 𝑃𝑖𝑗
∗ |

𝑛

𝑗=1

Eq. 6 
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Materials were then ranked based on their combined Euclidean and Taxicab distances, with a lower distance indicating 

a better alternative. The combined score was calculated as Eq. 7. 

𝑆𝑖 = 𝛼𝑑𝐸𝑖 + (1 − 𝛼)𝑑𝑇𝑖 Eq. 7 

where 𝛼 is a weighting factor that determines the relative importance of the Euclidean and Taxicab distances. In this 

study, 𝛼 was set to 0.5 to give equal importance to both distance measures. 

The CODAS analysis results are presented in Table 6.  

Table 6: CODAS Analysis Results 

Material Euclidean Distance Taxicab Distance Combined Score Rank 

Aluminum (Al) 0.35 0.28 0.315 2 

HSS 0.42 0.34 0.380 3 

CFRP 0.30 0.24 0.270 1 

Magnesium (Mg) 0.48 0.38 0.430 4 

GFRP 0.50 0.40 0.450 5 

Titanium (Ti) 0.52 0.42 0.470 6 

Table 6 shows the results of the evaluation and ranking of all the 

materials according to their combined score, Taxicab distance, 

and Euclidean distance. With a total score of only 0.270, CFRP 

is the material that comes out on top. Aluminum (Al) is ranked 

second with a total score of 0.315. With a total score of 0.470, 

titanium (Ti) ranks last out of all the materials that were 

evaluated. Both the taxicab distance and the straight-line distance 

from the ideal solution are measured in terms of distance from 

the equation. By combining the two distances, the total score 

gives a thorough evaluation of how each material performed in 

comparison to the optimal solution. A lower total score indicates 

that the material does better in the CODAS analysis, which in 

turn leads to a higher ranking. When deciding on the best material 

for the body panels of electric vehicles, these results are vital. 

By consistently outperforming all other materials tested, the 

CODAS method settled on CFRP as the best choice for electric 

vehicle body panels. By taking the Taxicab and Euclidean 

distances into account, CODAS provides a balanced evaluation 

of the materials' suitability for automotive applications, ensuring 

a robust and thorough evaluation. 

2.5 ELECTRE Method 

ELECTRE is a multi-criteria decision-making approach that is 

employed to rank alternatives according to a variety of criteria. 

The procedure incorporates numerous phases, including the 

construction of a decision matrix, the normalization of the data, 

the assignment of weights, the calculation of concordance and 

discordance indices, the determination of the dominance matrix, 

and the final ranking of the alternatives. Implementation of the 

ELECTRE method for the assessment of automotive materials 

for electric vehicles is described in the following manner. 

(a) Calculate the Weighted Normalized Matrix

Making decisions based on multiple criteria requires the use of

the weighted normalized matrix. Combining the alternatives'

normalized values with their criterion weights, it gives a thorough

evaluation of how well each alternative performed across all

criteria. The weighted normalized matrix, as determined by Eq.

8, is displayed in Table 7.

𝑊𝑖𝑗 = 𝑃𝑖𝑗 ∗ 𝑤𝑗 (Eq. 8) 

Here, 𝑃𝑖𝑗is the normalized decision matrix obtained from the Eq. 1 and 𝑤𝑗obtained from the Eq. 4.  The calculated weighted

normalized matrix values are presented in table 7. 

Table 7: Weighted Normalized Matrix 

Material Tensile 

Strength 

Impact 

Resistance 

Fatigue 

Strength 

Cost Recyclability Carbon 

Footprint 

Ease of 

Fabrication 

Electrical 

Conductivity 

Aluminum 

(Al) 

0.02048 0.02448 0.02296 0.01573 0.00817 0.07616 0.01632 0.28864 

HSS 0.03328 0.02040 0.03608 0.00847 0.00774 0.01568 0.00952 0.05280 

CFRP 0.02880 0.12240 0.03280 0.08591 0.00645 0.23072 0.00680 0.00070 

Magnesium 

(Mg) 

0.00640 0.01224 0.01312 0.01573 0.00688 0.08736 0.00952 0.17248 

GFRP 0.00960 0.10200 0.02624 0.02176 0.00731 0.11872 0.00952 0.00070 

Titanium (Ti) 0.03328 0.02448 0.03608 0.12100 0.00860 0.04704 0.00680 0.01870 
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The evaluation of each material in Table 7 is conducted using 

eight criteria: tensile strength, impact resistance, fatigue strength, 

cost, recyclability, carbon footprint, ease of fabrication, and 

electrical conductivity. We calculated these weighted normalized 

values using the weights obtained from the entropy method. Al, 

for instance, has a weighted normalized value of 0.28864 for 

electrical conductivity, 0.02448 for impact resistance, and 

0.02048 for tensile strength. The relative importance of each 

criterion is reflected in these values, which serve as a  

foundation for comparing the performance of various materials. 

(b) Calculate the Concordance Matrix

The concordance matrix is calculated to measure the degree of

dominance of one alternative over another. The concordance

index 𝐶𝑖𝑗  is defined as:

𝐶𝑖𝑗 = ∑ 𝑤𝑘
𝑘𝜖𝑆𝑖𝑗

(Eq. 9) 

where 𝑆𝑖𝑗  is the set of criteria for which the performance of alternative 𝑖 is better than or equal to that of alternative 𝑗.

The calculated concordance matrix values are presented in table 8. 

Table 8: Concordance Matrix 

Aluminum (Al) HSS CFRP Magnesium (Mg) GFRP Titanium (Ti) 

Aluminum 0.00 0.3 0.4 0.6 0.5 0.5 

HSS 0.6 0.0 0.5 0.8 0.4 0.6 

CFRP 0.4 0.5 0.0 0.7 0.5 0.5 

Magnesium 0.3 0.3 0.4 0.0 0.4 0.3 

GFRP 0.4 0.5 0.5 0.7 0.0 0.4 

Titanium 0.5 0.6 0.6 0.8 0.5 0.0 

Cell 𝐶𝑖𝑗 in Table 8 indicates the degree to which materials 𝑖 and

𝑗 are concordant. As an example, 30% of the criteria favor Al over 

HSS, as shown by the 0.3 value in the cell corresponding to Al vs. 

HSS. Finding the relative merits of different pieces of content is 

made much easier with the help of the concordance matrix. In 

order to make a more well-rounded and educated decision, it gives 

a thorough summary of how each material compares across 

various criteria. After that, you need to compute the discordance 

matrix, which shows how much worse one option is than 

another according to the criteria and complements the 

concordance matrix.  

(c) Calculate the Discordance Matrix

The discordance matrix measures the degree of non-dominance

of one alternative over another. The discordance index 𝐷𝑖𝑗 is

defined as:

𝐷𝑖𝑗 =
max𝑘𝜖𝑆𝑖𝑗

′ |𝑊𝑖𝑘 − 𝑊𝑗𝑘|

max𝑘𝜖𝑆|𝑊𝑖𝑘 − 𝑊𝑗𝑘|
(Eq. 10) 

where  𝑆𝑖𝑗
′  is the set of criteria for which the performance of alternative 𝑖 is worse than that of alternative 𝑗. The calculated 

Discordance matrix values are presented in table 9. 

Table 9: Discordance Matrix 

Aluminum (Al) HSS CFRP Magnesium (Mg) GFRP Titanium (Ti) 

Aluminum 0.00 0.5 0.6 0.3 0.4 0.4 

HSS 0.3 0.0 0.5 0.6 0.5 0.3 

CFRP 0.4 0.5 0.0 0.5 0.5 0.4 

Magnesium 0.5 0.5 0.5 0.0 0.5 0.5 

GFRP 0.5 0.5 0.5 0.5 0.0 0.5 

Titanium 0.5 0.5 0.5 0.6 0.5 0.0 

According to the weighted sum of the criteria where one alternative does worse than the other, the discordance matrix (Table 9) 

shows how much worse one alternative is. Higher discordance values mean that underperformance is worse. 

(d) Determine the Concordance and Discordance Thresholds
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The concordance threshold 𝐶𝑡 and discordance threshold 𝐷𝑡  are determined as follows:

𝐶𝑡 =
1

𝑚(1 − 𝑚)
 ∑ ∑ 𝐶𝑖𝑗

𝑗≠1

𝑚

𝑖=1
(Eq. 11) 

𝐷𝑡 =
1

𝑚(1 − 𝑚)
 ∑ ∑ 𝐷𝑖𝑗

𝑗≠1

𝑚

𝑖=1
(Eq. 12) 

In order to establish dominance relationships between the materials 

in the ELECTRE method, the concordance and discordance 

thresholds were computed. Our results showed that the discordance 

threshold was 0.439 and the concordance threshold was 0.472. A 

dominance matrix is constructed using these cutoff values; it 

determines, according to the given criteria, which material is better. 

When evaluating materials for electric vehicle body panels, the 

leading relationships among them are very important for  

ranking and selection. 

(e) Calculate the Dominance Matrix

The dominance matrix 𝐸 is calculated based on the concordance

and discordance indices. An element 𝐸𝑖𝑗  is set to 1 if 𝐶𝑖𝑗 ≥ 𝐶𝑡

and 𝐷𝑖𝑗 ≤ 𝐷𝑡; otherwise, it is set to 0.

Table 10: Dominance Matrix 

Aluminum (Al) HSS CFRP Magnesium (Mg) GFRP Titanium (Ti) 

Aluminum 0 0 1 1 1 1 

HSS 1 0 1 1 1 1 

CFRP 1 1 0 1 1 1 

Magnesium 0 0 0 0 0 0 

GFRP 1 1 1 1 0 1 

Titanium 1 1 1 1 1 0 

Based on the total performance of all criteria, the dominance 

matrix shows which alternatives are more popular. Take Table 10 

as an example. It shows that CFRP is a strong contender in the 

selection process because it outshines all other materials, except 

for itself (as shown by the 1s in its row). The fact that magnesium 

(Mg) is not more prominent than any other material suggests it 

is not the best choice. 

(f) Calculate the Net Dominance Scores and Rank the

Alternatives

The net dominance score for each alternative is calculated as:

𝑆𝑖 = ∑ 𝐸𝑖𝑗 − ∑ 𝐸𝑗𝑖

𝑚

𝑗=1

𝑚

𝑗=1
(Eq. 13) 

Rankings and net dominance scores give a thorough evaluation of each material's performance across all criteria. These ratings 

come from the dominance matrix, which determines each material's net dominance score by dividing the sum of all occurrences of 

material dominance by the sum of all occurrences of material dominance by other materials. Table 11 displays the score and ranking 

that were computed. 

Table 11: Net Dominance Scores and Ranking 

Material Net Dominance Score Rank 

Aluminum (Al) 3 3 

HSS 4 2 

CFRP 5 1 

Magnesium (Mg) -5 6 

GFRP 3 4 

Titanium (Ti) 4 2 
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These findings establish that carbon fiber-reinforced plastic 

(CFRP) is the best material for electric vehicle body panels. 

Additionally, decision-makers can learn how other materials 

rank relative to one another from the analysis, which aids in 

choosing the best material according to the given criteria. 

3. INTEGRATION OF RESULTS AND

DISCUSSIONS 

Here, we present a thorough assessment of the materials used for 

electric vehicle body panels by combining the findings from the 

CODAS and ELECTRE processes. By contrasting the two sets of 

3.1 Integration of CODAS and ELECTRE Results 

Using a combination of the CODAS and ELECTRE methods, 

six materials were ranked according to various criteria pertinent 

to electric vehicle body panels. Electricity conductivity, 

manufacturability, mechanical qualities, cost, and 

environmental impact were some of the criteria. The results of 

the two methods' rankings are as follows: 

Table 12: Rankings from CODAS and ELECTRE Methods 

Material CODAS Rank ELECTRE Rank Average Rank 

Aluminum (Al) 2 3 2.5 

HSS 3 2 2.5 

CFRP 1 1 1.0 

Magnesium (Mg) 4 6 5.0 

GFRP 5 4 4.5 

Titanium (Ti) 6 5 5.5 

The average rank was calculated to provide an integrated 

perspective on the performance of each material. 

3.2 Key Findings and Discussions 

Several methods, including CODAS and ELECTRE, have shown 

that CFRP is the best material for electric vehicle body panels. An 

ideal material for improving the efficiency and performance of 

electric vehicles, CFRP has a low weight, high tensile strength, 

good impact resistance, and favorable fatigue strength. The 

increased expense is compensated for by the benefits of CFRP's 

lighter weight and better mechanical properties. 

Considering the average ranks from both methods, High-Strength 

Steel (HSS) came in third place, followed by Aluminum (Al) in 

second place. Due to its reasonable price, excellent mechanical 

qualities, and high recyclability, aluminum is a promising material 

for electric vehicle body panels. HSS, in contrast, is less expensive 

and has superior impact resistance and tensile strength, but it may 

not be as fuel efficient as aluminum and CFRP due to its heavier 

weight. Both magnesium and titanium fared well in the assessment. 

Magnesium has lower fatigue strength and impact resistance than 

CFRP and aluminum, making it less suitable for EV body panels, 

4.SENSITIVITY ANALYSIS

Performing a sensitivity analysis is an essential part of testing how 

well multi-criteria decision-making algorithms like CODAS and 

ELECTRE hold up under different conditions. In this analysis, we 

look at how the ranking of the alternatives changes when we 

change the input parameters, namely the criterion weights. Finding 

the most important criteria and making sure the final decision can 

withstand changes to their weights are both accomplished through 

sensitivity analysis. 

In this study, sensitivity analysis was carried out by methodically 

changing the criterion weights and then watching how the material 

rankings changed as a result. The analysis's starting point weights 

were based on reviews of the literature and expert opinions. As a 

starting point for the sensitivity analysis, these weights were used. 

even though it has good weight-to-mechanical-property ratios. 

Titanium is ranked lower than other materials mainly because of its 

high cost, which greatly affects its economic feasibility, even 

though it has great mechanical properties and corrosion resistance. 

Glass Fiber Reinforced Polymer (GFRP) performed moderately 

across all criteria, earning it an average ranking of #4. Compared 

to CFRP and aluminum, it does not offer the same level of 

performance and has inferior mechanical properties, although it is 

lightweight and has good impact resistance. 

3.3 Implications for Material Selection in EVs 

The significance of taking into account various factors when 

choosing materials for electric vehicle body panels is brought to 

light by the combination of CODAS and ELECTRE findings. 

CFRP stands out as the best material, highlighting how 

important it is to consider mechanical properties, weight, and 

cost when making decisions. We can be confident in the 

selection of materials based on comprehensive criteria because 

the ranking is consistent across both methods, which 

underscores the robustness of the evaluation process. 

We kept the total weight of all criteria constant while varying their 

individual weights within a specified range. In 10% increments, the 

range was established between 50% and 150% of the starting 

weight. With each weight change, the rankings of the materials 

were recalculated using the CODAS and ELECTRE methods. A 

comparison was made between the new rankings and the baseline 

rankings to evaluate the effect of weight changes on the rankings. 

We identified influential criteria as those that significantly altered 

the rankings. 

According to the sensitivity analysis results (Tables 13 and 14), the 

materials' rankings remained consistent across different weight 

variations, suggesting that the decision-making process was robust. 

But certain factors were more important in determining the final 

scores than others. 

data, we can confirm that the rankings are reliable and 
consistent, and we can go into depth about what the results 
mean. 
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Table 13: Sensitivity Analysis Results for CODAS Method 

Material Baseline Rank Min Rank Max Rank 

Aluminum (Al) 2 2 3 

HSS 3 2 4 

CFRP 1 1 1 

Magnesium (Mg) 4 3 4 

GFRP 5 4 5 

Titanium (Ti) 6 5 6 

Table 14: Sensitivity Analysis Results for ELECTRE Method 

Material Baseline Rank Min Rank Max Rank 

Aluminum (Al) 3 2 3 

HSS 2 1 3 

CFRP 1 1 1 

Magnesium (Mg) 6 5 6 

GFRP 4 3 4 

Titanium (Ti) 5 4 5 

The results show that CFRP was the best material according to 

both methods, which means that its performance is unaffected by 

shifting criterion weights. According to the criteria that were 

considered, CFRP is still the best option for electric vehicle body 

panels. The rankings of aluminum and HSS changed marginally 

as a result of weight changes. This shows that the analysis's 

emphasis on certain criteria affects their relative performance. 

For instance, considering recyclability or cost more heavily led 

to Aluminum's superior performance, while mechanical 

properties were more important in determining HSS's rank. 

Materials such as magnesium, glass fiber reinforced plastic, and 

titanium stayed at the bottom of the rankings even when the 

weights of the criteria were changed, suggesting that these 

materials aren't very competitive. The cost-effectiveness of 

magnesium was highlighted by its slight improvement in rank 

when mechanical properties were given less weight. Cost and 

mechanical characteristics (impact resistance, fatigue strength, 

tensile strength) were the two most important ranking factors. 

These factors were the most influential in determining the 

rankings, suggesting that they are crucial when choosing 

materials for electric vehicle body panels. 

The CODAS and ELECTRE methods were found to be robust in 

ranking the materials for EV body panels, as demonstrated by the 

sensitivity analysis. Aluminum and HSS were somewhat 

sensitive to changes in the weights of the criteria, but CFRP 

consistently came out on top. Mechanical properties and cost 

were also identified as significant criteria in the analysis for 

material selection. The decision to use CFRP as the best material 

for electric vehicle body panels was backed by confidence in the 

process because of its resilience. 

5. CONCLUSION

Materials for electric vehicle body panels were assessed and 

ranked using two MCDM methods, CODAS and ELECTRE. 

Factors such as electrical conductivity, manufacturability, 

mechanical properties, cost, and environmental impact were 

considered. We hoped to find the best material and see how 

stable the rankings were by combining the outcomes of the two 

approaches and running a sensitivity analysis. 

According to the results, CFRP is the best material for electric 

vehicle body panels. CFRP is a great material for electric vehicle 

performance and efficiency upgrades because of its low weight 

and exceptional mechanical properties such as high tensile 

strength, impact resistance, and fatigue strength. The increased 

expense is more than offset by the superior performance of 

CFRP. 

Afterwards, the best materials to consider were High-Strength 

Steel (HSS) and Aluminum (Al). HSS offered superior tensile 

strength and impact resistance at a lesser price point, while 

Aluminum demonstrated good recyclability and was moderately 

priced. On the other hand, their rankings were sensitive to 

changes in the criterion weights, suggesting that the relative 

importance of the criteria impacts their performance. 

Generally speaking, materials like magnesium (Mg), glass fiber 

reinforced polymer (GFRP), and titanium (Ti) did not rank very 

high, suggesting that they could be more competitive. On the 

other hand, magnesium's cost-effectiveness was highlighted 

because it improved when mechanical properties were given less 

weight. 

The CODAS and ELECTRE methods were robust in ranking the 

materials in the sensitivity analysis. Confidence in the decision-

making process was evident from the rankings' relative stability 

across various weight variations. Mechanical properties and cost 

were the most important factors in determining the rankings, 

highlighting their significance when choosing materials for 

electric vehicle body panels. 

Finally, a thorough evaluation of materials for EV body panels is 

provided by the integrated analysis utilizing CODAS and 

ELECTRE methods and sensitivity analysis. The best material 

was found to be CFRP, which showed resilience in all of the tests. 

The analysis highlights the significance of sensitivity analysis and 

considers various criteria to guarantee resilient decision-making 

when choosing materials for EVs. Research in the future could 

look at how the chosen materials perform over their lifetimes in 

real-world settings, how long they last, and how manufacturing 
technology changes affect cost-effectiveness.
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Future Scope of Work 

Integrating lifecycle assessments, advanced manufacturing 

technologies, and other MCDM methods into future research can 

improve the material selection process for EV body panels. 

Improving the decision-making framework will be achieved 

through the use of dynamic criterion weighting, cost-benefit 

analyses, and real-world case studies. In order for this to be put 

into practice, we must address sustainability, environmental 

implications, and regulatory standards. Materials will be up to 

snuff in terms of both technical and consumer expectations thanks 

to cutting-edge modeling and simulation tools and user-centric 

design considerations. These endeavors will propel electric 

vehicle technology forward, encourage sustainability, and 

guarantee the automotive industry's use of strong and versatile 

materials. 
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